Precision Optical Oxygen Measurement

4401OXY Oxygen Analyzer & BOS Sensors

Industrial Process Control & Monitoring

- Excellent long term stability and low drift
- Measurement inherently fails high if sensor damaged (no false zero)
- LOD = 0.5 ppm O\(_2\) gas phase
- No membranes to foul; No electrolytes to poison; No consumption of O\(_2\)
- Hazardous area approvals: FM, CSA, ATEX, UL and CE
- No cross-sensitivity or damage caused by: CO\(_2\), H\(_2\)S, NH\(_3\), NO\(_2\), heavy metals, ethanol, methanol or ionic species pH, S\(_2\)\(^-\), SO\(_4\)\(^{2-}\), Cl\(^-\), salinity or turbidity
- Measurement independent of flow velocity

The 4401OXY analyzer optically measures oxygen in either the gas or liquid phase by utilizing quench luminescence of an oxygen specific luminophore.

The analyzer is suitable for direct field installation (NEMA 4X) in hazardous area (Class I, Division 2). The optical fiber sensor platform allows small inline sensors to be installed into sample tubing lines (1/4"), flow cells using NPT fittings, or directly into tanks or process lines using our retractable “hot tap” sensor design. BOS optical oxygen sensors are impervious to typical O\(_2\) poisons (H\(_2\)S) and interferences (combustibles, magnetic, CO\(_2\) and H\(_2\)) with high accuracy and long-term stability measurements without the need for complex or advanced sample conditioning systems. The threaded version of the optical sensor has optional Dual Seal (ANSI/ISA 12.27.01) classification for high pressure applications up to 1200 PSIG (82.7 BAR).

The analyzer display and output units can be setup in either partial pressure (hPA or Torr) or in concentration (ppm or % O\(_2\)) for the gas phases along with hPA, ppm or ppb for dissolved oxygen in liquid phase.

Typical Applications - Gas Phase (g)
- O\(_2\) in hydrocarbon streams
- O\(_2\) detection in nitrogen headers
- O\(_2\) in process streams
- O\(_2\) in nitrogen tank blanketing
- Trace level oxygen in flare gas

Limit of Detection: 0.5 ppm O\(_2\) @ 1 atm, 20°C (0.0005 hPa)

Typical Applications - Liquid Phase (l)
- High pressure produced water Dissolved O\(_2\)
- ppb dissolved O\(_2\) for waterflood injection
- Oxygen in methanol and ethanol
- Oxygen in oils
- Dissolved O\(_2\) in liquid process streams
- Dissolved O\(_2\) in product streams

Limit of Detection: 1 ppb Dissolved O\(_2\)
Precision Optical Oxygen Measurement
4401OXY Oxygen Analyzer & BOS Sensors

Principle of Operation

The 4401 OXY is a phase fluorometric analyzer that utilizes phase modulation to evaluate the luminescent decay time of an oxygen specific luminophore to calculate oxygen concentration. The sensor comprises of a small luminophore embedded in a polymeric matrix at the end of a fiber optic cable allowing for an extremely sensitive and accurate measurement of the partial pressure of oxygen that is applicable in both gas phase and liquid phase.

The analyzer uses an LED to emit blue light through fiber optic cable down the sensor tip [Fig 1]. The sensor tip contains the luminophore which absorbs the energy and rises to an excited state. In the absence of oxygen the excited luminophore will fall back to its ground state at a specific rate and in the process emits a red shifted light which is transmitted to the analyzer (spectrometer) via the optic cable where it is detected by a photomultiplier tube. When oxygen is present it quenches the fluorescence at a rate proportional to the oxygen concentration [Fig 2]. The phase shift between the excitation source and the fluorescent signal is measured and the oxygen concentration is calculated [Fig 3].
4401OXY Oxygen Analyzer Specifications

Part Numbers (Ordering Information)

<table>
<thead>
<tr>
<th>Part Numbers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4401OXY</td>
<td>Oxygen Analyzer with 100-240VAC Operational Power, FM / CSA Approval</td>
</tr>
<tr>
<td>4401OXY-CE</td>
<td>Oxygen Analyzer with 100-240VAC Operational Power, ATEX / CE Approval</td>
</tr>
<tr>
<td>4401OXY-DC</td>
<td>Oxygen Analyzer with 9-24VDC* Operational Power, FM / CSA Approval</td>
</tr>
<tr>
<td>4401OXY-DC-CE</td>
<td>Oxygen Analyzer with 9-24VDC* Operational Power, ATEX / CE Approval</td>
</tr>
</tbody>
</table>

Input Information

Sensor Input

- (1) O₂ optical input BOS1, BOS2 or BOS3 sensor (SMA connector), (1) PT1000 input

Digital Interface

Analog Outputs

- (2) Programmable voltage outputs with galvanic isolation, 0 to 10 V
- (2) Programmable current outputs with galvanic isolation, 4 to 20 mA

Sampling Rate

Programmable from 3 seconds to 1 hour

User Adjustable Options

Units: User Selectable

- Gas Phase: % air-saturation, % oxygen, hPa, Torr, ppm
- Liquid Phase: hPa, Torr, ppm, ppb, µmol

Calibration

Conventional two-point calibration

Environmental

Environmental Rating

- NEMA 4X

Operating Temperature

- 0 to +50°C (32 to 122°F)

Storage Temperature

- -10 to +65°C (14 to 149°F)

Max. Operating Relative Humidity

- 95%

Physical

Dimensions H x W x D (Inches)

- 8.4 x 10 x 8.4 inches (21.3 x 25.4 x 21.3 cm)

Weight (lb)

- 13.7 lb (6.2 kg)

Power Supply

Power

- 100-240 VAC, 50/60Hz or 9-24 VDC*

* Input power must not exceed 24VDC

Analyzer Dimensions

![Analyzer Dimensions Diagram](image-url)
BOS Optical Oxygen Sensor Family

The BOS optical sensors are available in three installation styles:

- **BOS FIBERSENSE** - 4mm sensor for small tubing installations
- **BOS FLEXSENSE** - Threaded sensor with removable luminophore sensor cap
- **BOS SAFETAP** - Retractable “hot tap” sensor

All three sensor styles can be built in any measurement range (BOS1, BOS2, BOS3).

BOS FIBERSENSE Optical Oxygen Sensors

The BOS FIBERSENSE is a 4mm wand-style optical oxygen sensor that offers high precision in a small package. The small sensing tip can be installed directly into a tube fittings which makes it the ideal choice for oxygen measurement on sample line installations. The fiber optic tip is encased in a stainless steel wand and can be supplied bare or with optional armored conduit (figure 5 & 6). The BOS FIBERSENSE product is commonly used in gas phase sample line installations. An external temperature sensor is required for compensation.
BOS FLEXSENSE Optical Oxygen Sensors

The BOS FLEXSENSE is our most versatile optical oxygen sensor. The sensor is based on the DIN 19263 dimensions commonly used with pH and conductivity sensors. 1/2” and 1” Male NPT connections make this sensor best suited for flowcell installations where frequent access to the sensor is required. Oxygen measurement is accomplished through a replaceable luminophore sensing cap. A removable fiber optic wand is used to transmit the optical signal to/from the window. The BOS FLEXSENSE is rated for pressures up to 1,200 PSIG making it well suited for applications such as produced water. The BOS FLEXSENSE can be specified with ANSI/ISA 12.27.01 Dual Seal Certification (figure 9 & 10). This design is specified when the distance between the oxygen analyzer and the measurement point crosses different hazardous zones. If this option is specified, then a separate direct contact temperature sensor should be installed.

BOS FLEXSENSE - Overview

![BOS FLEXSENSE - Overview Diagram]

BOS FLEXSENSE - Standard Dimensions

![BOS FLEXSENSE - Standard Dimensions Diagram]

<table>
<thead>
<tr>
<th>BOS FIBERSENSE Optical Oxygen Sensor Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Rating</td>
</tr>
<tr>
<td>Temperature Rating</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BOS FLEXSENSE Optical Oxygen Sensor Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Rating</td>
</tr>
<tr>
<td>Temperature Rating</td>
</tr>
<tr>
<td>Body Materials</td>
</tr>
<tr>
<td>Internal Seal Options</td>
</tr>
</tbody>
</table>
Precision Optical Oxygen Measurement
4401OXY Oxygen Analyzer & BOS Sensors

BOS FLEXSENSE - UL Dual Seal Version

The BOS FLEXSENSE UL Dual Seal version prevents process pressure from migrating across hazardous area boundaries. In the event of a primary sensor seal failure all process pressure is vented in the hazardous area and cannot reach the analyzer. A secondary seal and certified gland are part of the sensor assembly to provide proper sealing between each area.

The overall length of the dual seal sensor is a combination of an armor jacketed length (in hazardous area) and a PVC jacketed length of fiber that mates to the 4401OXY Oxygen Analyzer. Calculation of the armor jacketed length can be determined from the chart below.

<table>
<thead>
<tr>
<th>PVC JACKET LENGTH</th>
<th>OVERALL BOS SENSOR LENGTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>1.5M 4M 9M</td>
</tr>
<tr>
<td>2M</td>
<td>0.5M 3M 8M</td>
</tr>
<tr>
<td>5M</td>
<td>- 5M</td>
</tr>
<tr>
<td>7M</td>
<td>- 3M</td>
</tr>
</tbody>
</table>

\[
\text{ARMOR JACKET LENGTH} = \text{OVERALL BOS SENSOR LENGTH} - \text{PVC JACKETED FIBER LENGTH}
\]

Figure 9
BOS SAFETAP Retractable Optical Oxygen Sensors

Often oxygen measurement on external sample lines are not feasible. For in-line applications Barben Analytical offers the BOS SAFETAP retractable optical oxygen sensors. The BOS SAFETAP is designed to manually insert and retract (hot tap) from the process through a ball valve assembly. The free rotating safe-T-handle provides a secure gripping surface to manually insert the optical sensor into applications up to 450 PSIG. The BOS SAFETAP includes a security hook that catches the safe-T-handle to prevent unintended retraction. An additional compression gland using proven Conax® sealing technology provide additional insurance against unintended retraction.

In normal operation the BOS SAFETAP is rated up to pressures of 750 PSIG (51.7 Bar). When sensor calibration or replacement is required the removable luminophore tip can be retracted through the ball valve which is used to isolate the sensor from the process. Tubing ports are included as part of the welded retraction housing so that purge and complete insitu calibration can be performed without removal of the oxygen sensor. The BOS SAFETAP oxygen sensor includes an integral PT100 RTD temperature sensor and replaceable luminophore window cap so that sensor service is simple and low cost.
Precision Optical Oxygen Measurement
4401OXY Oxygen Analyzer & BOS Sensors

BOS SAFETAP - Dimensions

- Adjusted insertion depth 0 to 4"
- Process pipeline
- Retracted sensor length (20" fully retracted)
- Safe-T handle end profile (9.5" width)
- Valve retraction assembly with sensor removed
- Compression gland (dual internal seal)
- Security hook
- Purge & calibration ports - 1/4" tube fittings
- Anti-blowout lip
- Ø 12mm
- Replacable sensing window cap
- Temperature compensation
- Optical fiber to 4401OXY
- Fiber optic wand
- Overall sensor length 2.5M, 5.0M, 10M

Figure 11
BOS Range Specifications For All Products

<table>
<thead>
<tr>
<th></th>
<th>Dissolved Oxygen</th>
<th>Gaseous & Dissolved Oxygen @ 1atm, 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOB1 Gas or Liquid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement Range</td>
<td>0 - 1.8 mg/L (ppm)</td>
<td>0 - 4.2 % O₂, 0 - 41.4 hPa</td>
</tr>
<tr>
<td>Limit of Detection</td>
<td>1 ppb dissolved oxygen</td>
<td>0.002 % O₂</td>
</tr>
<tr>
<td>Resolution @ 20°C and 1013 hPa</td>
<td>± 0.30 at 1 μg/L (ppb)</td>
<td>± 0.0007 % O₂ at 0.002 % O₂; ± 0.007 hPa at 0.023 hPa</td>
</tr>
<tr>
<td></td>
<td>± 0.41 at 10 μg/L (ppb)</td>
<td>± 0.0015 % O₂ at 0.02 % O₂; ± 0.015 hPa at 2.0 hPa</td>
</tr>
<tr>
<td></td>
<td>± 0.63 at 200 μg/L (ppb)</td>
<td></td>
</tr>
<tr>
<td>Response Time (T₉₀)</td>
<td>< 30 sec.</td>
<td>< 6 sec.</td>
</tr>
<tr>
<td>Accuracy @ 20°C</td>
<td>1 ppb (l), 0.002 % O₂ (g), or 3% of the measured value whichever is greater</td>
<td></td>
</tr>
<tr>
<td>Drift from Photodecomposition</td>
<td>< 2.0 ppb within 30 days (1 min sample rate)</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>0 to 50°C (32 to 122°F)</td>
<td></td>
</tr>
<tr>
<td>Allowable Sensor Temperature</td>
<td>90°C (194°F) non-continuous</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Dissolved Oxygen</th>
<th>Gaseous & Dissolved Oxygen @ 1atm, 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOB2 Gas or Liquid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement Range</td>
<td>0 - 22 mg/L (ppm)</td>
<td>0 - 25 % O₂, 0 - 250 hPa</td>
</tr>
<tr>
<td>Limit of Detection (LOD)</td>
<td>15 ppb dissolved oxygen</td>
<td>0.03 % O₂</td>
</tr>
<tr>
<td>Resolution @ 20°C and 1013 hPa</td>
<td>± 4.5 at 90 μg/L (ppb)</td>
<td>± 0.01 % O₂ at 0.21 % O₂; ± 0.1 hPa at 2 hPa</td>
</tr>
<tr>
<td></td>
<td>± 45 at 9600 μg/L (ppb)</td>
<td>± 0.1 % O₂ at 20.9 % O₂; ± 1 hPa at 207 hPa</td>
</tr>
<tr>
<td></td>
<td>± 0.15 at 23 mg/L (ppm)</td>
<td></td>
</tr>
<tr>
<td>Response Time (T₉₀)</td>
<td>< 30 sec.</td>
<td>< 6 sec.</td>
</tr>
<tr>
<td>Accuracy @ 20°C</td>
<td>± 0.4 % O₂ at 20.9 % O₂; ± 0.05 % O₂ at 0.5 % O₂</td>
<td></td>
</tr>
<tr>
<td>Drift from Photodecomposition</td>
<td>< 0.03 % O₂ within 30 days (1 min sample rate)</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>0 to 50°C (32 to 122°F)</td>
<td></td>
</tr>
<tr>
<td>Allowable Sensor Temperature</td>
<td>90°C (194°F) non-continuous</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Gas Phase Oxygen Only</th>
<th>Gas Phase Oxygen Only @ 1atm, 20°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOB3 - Gas Phase Only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measurement Range</td>
<td>0 - 300 ppm with over-range of 1000 ppm</td>
<td></td>
</tr>
<tr>
<td>Limit of Detection (LOD)</td>
<td>0.5 ppm O₂</td>
<td></td>
</tr>
<tr>
<td>Resolution @ 20°C & 1013 hPa</td>
<td>10 ± 0.5 ppm; 100 ± 0.8 ppm; 200 ± 1.5 ppm</td>
<td></td>
</tr>
<tr>
<td>Response Time (T₉₀)</td>
<td>< 3 sec. based on 0 - 300 ppm measurement range</td>
<td></td>
</tr>
<tr>
<td>Accuracy @ 20°C</td>
<td>± 2ppm or ± 5% of measured value whichever is greater (or as partial pressure, +/- 0.002 hPa)</td>
<td></td>
</tr>
<tr>
<td>Drift from Photodecomposition</td>
<td>< 2.0 ppm within 30 days (1 min sample rate)</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>0 to 50°C (32 to 122°F)</td>
<td></td>
</tr>
<tr>
<td>Allowable Sensor Temperature</td>
<td>90°C (194°F) non-continuous</td>
<td></td>
</tr>
</tbody>
</table>

Cross Sensitivity for BOB1, BOB2, BOB3 Sensors Listed above

No cross-sensitivity for carbon dioxide (CO₂), hydrogen sulfide (H₂S), ammonia (NH₃), gaseous sulfur dioxide (SO₂), no cross-sensitivity to pH (1-14), ionic species like sulfide, sulfate or chloride. Usable in methanol, ethanol-water mixtures, and in pure methanol & ethanol. Avoid organic solvents like chloroform, toluene, acetone, and methylene chloride along with any gaseous chlorine (Cl₂).
Precision Optical Oxygen Measurement
4401OXY Oxygen Analyzer & BOS Sensors

BOS Optical Oxygen Sensor Configuration

<table>
<thead>
<tr>
<th>Sensor Range</th>
<th>Sensor and Seals</th>
<th>Body Material</th>
<th>Process Connection</th>
<th>Cable Armor</th>
<th>Sensor Length</th>
<th>Lead Length</th>
<th>Agency Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOS1</td>
<td>Gas (0 - 4.2% O₂, 0 - 41.4 hPa) or Liquid (0 - 1.8 ppm)</td>
<td>316 Stainless (all versions)</td>
<td>4mm Wand (BOS FIBERSENSE Sensors only)</td>
<td>1</td>
<td>0.7M (2.3ft) ("N" Standard lead length only)</td>
<td>0.7</td>
<td>N</td>
</tr>
<tr>
<td>BOS2</td>
<td>Gas (0 - 25% O₂, 0 - 250 hPa) or Liquid (0 - 22 ppm)</td>
<td>Titanium G2 (BOS FLEXSENSE Sensors only)</td>
<td>1" Male NPT Assembly Mounting Nut (BOS FLEXSENSE Sensors only)</td>
<td>2</td>
<td>2.5M (8.2ft)</td>
<td>2.5</td>
<td>V</td>
</tr>
<tr>
<td>BOS3</td>
<td>Gas only (0 - 300 ppm with 1000 ppm over-range)</td>
<td>Hastelloy-C 276 (BOS FLEXSENSE Sensors only)</td>
<td>1/2" Male NPT Ball Valve 750 PSIG Max (BOS SAFETAP sensors only)</td>
<td>5</td>
<td>5.0M (16.4ft)</td>
<td>5</td>
<td>V</td>
</tr>
</tbody>
</table>

Sensor Protection
1 | Armor Jacketing Protection
2 | PVC Jacketed Fiber - BOS FIBERSENSE sensors only (Use "N" For PVC Jacket Length)

BOS Sensor Overall Length (Refer to figures 6 to 11 depending on body style)

<table>
<thead>
<tr>
<th>Agency Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard - direct connection to 4401OXY Analyzer - Required for BOS FIBERSENSE & SAFETAP Sensors</td>
</tr>
<tr>
<td>ST</td>
</tr>
<tr>
<td>Standard with no integral TC (Uses B1150-1005 below)</td>
</tr>
<tr>
<td>SN</td>
</tr>
<tr>
<td>UL Dual Seal Approval (12mm only, No Integral Temperature Compensation available)</td>
</tr>
<tr>
<td>UL</td>
</tr>
</tbody>
</table>

Accessories for BOS FIBERTAP Optical Oxygen Sensors
SCP-CT | Sample Calibration Panel (specify with BOS FIBERSENSE, 4401OXY, and B1150-1005 Temperature Sensor) 84564-1004 4mm wand compression fitting 316 Stainless for 1/4" tubing fittings (customer supplied)

Accessories for BOS FLEXSENSE Optical Oxygen Sensors
SCP-CF | Sample Calibration Panel (specify with BOS FIBERSENSE, 4401OXY, and B1150-1005 Temperature Sensor) 85106-1018 Liquid Drain Option for SCP Panels. Provides sight window for manual drain in high moisture applications 84992-1006F Flow Cell Assembly, 316SS for BOS FLEXSENSE sensor with 1/2"NPT Thread, 1/4" Compression Inlet/Outlet 1000 PSIG max pressure 84992-1007F Flow Cell Assembly, Titanium for BOS FLEXSENSE sensor with 1/2"NPT Thread, 1/4" Compression Inlet/Outlet 1000 PSIG max pressure

General Accessories for Optical Sensors
B1150-1005 | External Temperature Compensation - PT1000 Sensor - 1/8" Dia x 4" 316SSS Body - 2ft Cable with Armor (For SCP Panels) 84985-1003 | Flowmeter 0.2 - 2.5 LPM w/SS Valve, Acrylic body
SCP Oxygen Sample Calibration Panel - Gas Phase

The SCP Sample Calibration Panel [Fig. 12] provides an easy, pre-engineered solution for gas phase applications. All related tubing, flow meters, valves, and gauges come pre-installed on the SCP panel. Specify the panel, analyzer, BOS sensor, and RTD to get up and running quickly.

Features
- Manual calibration without removing sensor
- Fast loop 10 LPM max (total capacity of 12 LPM)
- Filters: particulate (0.5µm) & coalescing (0.3µm)
- Inlet pressure regulation (Max. inlet 300 PSIG)
- 304 stainless steel mounting panel

SCP - Sample Calibration Panel Specifications

<table>
<thead>
<tr>
<th>Part Numbers</th>
<th>Applications</th>
</tr>
</thead>
</table>
| SCP-CT | Designed for dry gas applications
Specify with 4401OXY, BOS FIBERSENSE (0.7m) and B1150-1005 RTD |
| SCP-CF | Use in wet gas applications or when ease of tip replacement is required
Specify with 4401OXY, BOS FLEXSENSE (2.5m) and B1150-1005 RTD. |

Dimensions H x W x D	24.5 x 16.5 x 6.33 inches (62.3 x 41.9 x 16.4 cm) Note - Split panel design provides some mounting flexibility
Weight (lb)	39 lb (17.7 kg) when supplied with sensors and analyzer.
Process Connections	1/4" Tubing for Sample Inlet and Calibration Gases. 3/8" Tubing for Drain and Sample Outlet.
Sample	Gas phase, Sample Inlet 300 PSIG (20 BAR) @ 100ºC (Note - Sensor Max. 90ºC (194ºF) non-continuous)

Physical

Part Numbers
- SCP-CT
- SCP-CF

Applications
- SCP-CT: Designed for dry gas applications. Specify with 4401OXY, BOS FIBERSENSE (0.7m) and B1150-1005 RTD.
- SCP-CF: Use in wet gas applications or when ease of tip replacement is required. Specify with 4401OXY, BOS FLEXSENSE (2.5m) and B1150-1005 RTD.

Dimensions H x W x D: 24.5 x 16.5 x 6.33 inches (62.3 x 41.9 x 16.4 cm) Note - Split panel design provides some mounting flexibility.

Weight (lb): 39 lb (17.7 kg) when supplied with sensors and analyzer.

Process Connections: 1/4" Tubing for Sample Inlet and Calibration Gases, 3/8" Tubing for Drain and Sample Outlet.

Sample: Gas phase, Sample Inlet 300 PSIG (20 BAR) @ 100ºC (Note - Sensor Max. 90ºC (194ºF) non-continuous).

Accessories: B5106-1018
- Liquid Drain Option. Provides sight window for manual drain in high moisture applications.
Precision Optical Oxygen Measurement
4401OXY Oxygen Analyzer & BOS Sensors

Agency Approvals

LVD Low Voltage Directive

EMC - Electromagnetic Compatibility
EN 61326-1:2006 - Electrical equipment for measurement, control, and laboratory use.
Exception: Electrical Fast Transient / Burst Test Procedure EN 61000-4-4

II 3 G Ex nA IIC 135°C (T4)
ATEX - Equipment explosive atmospheres
EN 60079:2006 - Electrical apparatus for explosive gas atmospheres - Part 0: General requirements
EN 60079-15:2005 - Electrical apparatus for explosive gas atmospheres - Part 15: Construction, test, and marking of type of protection "n" electrical apparatus

Class 3600 - Electrical Equipment for Use in Hazardous (Classified) Locations - General Requirements
Class 3611 - Non-Incendive Electrical Equipment for Use in Class I & II Division 2, and Class III, Divisions 1 & 2 Hazardous Locations
Class 3810 - Electrical Equipment for Measurement, Control, and Laboratory Use
CSA C22.2 No. 142-M1987 (R2004) - PROCESS CONTROL EQUIPMENT - Industrial Products
CSA STD C22.2 No. 213-M1987 (R2004) - Non-Incendive Electrical Equipment for Use in Class I, Division 2 Hazardous Locations
ANSI/NEMA-250 - Enclosures for Electrical Equipment (1000 Volts Maximum)

Dual Seal Classification of Fiber Optic Oxygen Sensor per ANSI/ISA 12.27.01
(Appplies to Sensor Only. Refer to sensor manual for more information)

Contact Us

Barben Analytical is a leading supplier of analytical measurement technology targeting the industrial marketplace. It is a wholly owned subsidiary of Ametek.

Ametek has nearly 14,000 colleagues at over 120 manufacturing locations around the world. Supporting those operations are more than 80 sales and service locations across the United States and in more than 30 other countries around the world.

Barben Analytical
5200 Convair Drive
Carson City, NV 89706 USA

Toll Free: +1 (800) 993-9309
Phone: +1 (775) 883-2500
Fax: +1 (775) 297-4740
email: Sales.Barben@Ametek.com
Web: www.BarbenAnalytical.com

Barben Analytical reserves the right to make technical changes or modify the contents of this document without prior notice. We reserve all rights in this document and in the subject matter and illustrations contained within.

Hastelloy® is a registered trademark of Haynes Intl Inc.
Viton® is a registered trademark of DuPont Dow Elastomers L.L.C.